Theoretically appealing but experimentally elusive the magnetic monopole has captured the interest of the physics community for more than eight decades. The magnetic monopole (an isolated north or south magnetic pole) is conspicuously absent from the Maxwell Theory of electromagnetism. In 1931 Paul Dirac showed that the magnetic monopole can be consistently incorporated into the Maxwell theory with virtually no modification to the theory. In addition, Dirac demonstrated that the existence of a single magnetic monopole necessitates not only that electric charge be quantized but also that the electric and magnetic couplings be inversely proportional to each other, the first suggestion of so called weak/strong duality. Subsequently, Gerard ’t Hooft and Alexander Polyakov showed that within the context of the spontaneously broken Yang-Mills gauge theory SO(3) magnetic monopole solutions of finite mass must necessarily exist. Furthermore, these solutions exhibit an internal structure and also possess the same weak/strong duality discovered by Dirac. Consequently, Claus Montonen and David Olive conjectured that there exists an exact weak/strong, electromagnetic duality for the spontaneously broken SO(3) gauge theory. More recently, this conjecture has become credible within the broader context of $N = 2$ or $N = 4$ Super-Yang-Mills theories. Despite the lack of experimental evidence for the existence of magnetic monopoles physicists still remain optimistic of their existence. Indeed, Alan Guth proposed the inflationary model of the universe, in part, to explain why magnetic monopoles have escaped discovery. In our presentation we briefly review the theory of the magnetic monopole both historically and pedagogically, to less extent. We also discuss implications of the magnetic monopole’s existence from the perspective of Grand Unified Theories. We finally focus our discussion on magnetic monopole solutions within the context of superstring theory, introducing solutions which are exact and closed to first order in the string coupling constant. The interpretation of these solutions offers a stark contrast to the quantum field theoretic interpretation of the ’t Hooft/Polyakov monopole. The superstring monopole solutions describe a wormhole connecting two otherwise disconnected spacetimes, specifically two D3-branes. In one spacetime the monopole is an isolated north magnetic pole while in the other spacetime it is a south magnetic pole. These solutions also suggest a subtle, but profound, connection between the Yang-Mills and gravitational interactions, specifically a gauge/gravity duality, i.e. an explicitly unified theory of the fundamental natural forces.