Integral representation of the cosmic microwave background spectrum

Moorad Alexanian*
Department of Physics and Physical Oceanography
University of North Carolina Wilmington
Wilmington, NC 28403-5606

(Dated: March 7, 2019)

We use an integral representation for nonthermal radiation to describe the spectrum of the cosmic microwave background (CMB). We obtain a lower and an upper bound to the spectrum. The upper bound is given by the Rayleigh-Jeans law with a temperature \(T_{\text{RJ}} \) that can be determined by the absorption signal of 21 cm photons. If \(T_{\text{RJ}} > T_{\text{CMB}} \), then the lower bound allows to conclude that additional photons to the remnant of the Big Bang are need to explain the present CMB. These constraints are additional to other cosmological or astrophysical constraints in the study of the distortions of the CMB brought about by new physics particles or fields.

I. INTRODUCTION

The lambda cold dark matter (ΛCDM) model has been established as the standard cosmological model to describe the expansion history and the growth of the large-scale structure of the Universe [1]. Assuming the ΛCDM model [2], cosmological parameters have been measured within percent-level uncertainties by a combination of observations such as the cosmic microwave background (CMB) experiments [3, 4]. Additional measurements include Type Ia supernovae and baryon acoustic oscillations (See references in [2]). Despite the success of the model, we are challenged by a fundamental lack of physical understanding of the main components of the universe, dark matter, and cosmological constant or more generally dark energy. In order to understand these dark components, it is of great importance to test the ΛCDM model at high precision using a variety of cosmological probes [2].

Recently, Pospelov, et al. [5] consider modifications of the cosmic microwave background (CMB), within its Rayleigh-Jeans (RJ) end of the spectrum, \(\omega \ll T_{\text{CMB}} \), owing to dark matter (DM) and the interaction of nonthermal dark radiation (DR) \(A' \) with ordinary photons \(A \) via the interaction \(eF'_{\mu\nu}F_{\mu\nu} \) [6]. The DR quanta are much softer, but more numerous than CMB photons,

\[
\omega_{\text{DR}} \ll \omega_{\text{CMB}}, \quad n_{\text{DR}} > n_{\text{RJ}}, \quad \omega_{\text{DR}} n_{\text{DR}} \ll \rho_{\text{tot}}, \tag{1}
\]

where \(\rho_{\text{tot}} \) is the total energy density of radiation and DM, \(n_{\text{DR}} \) is the number density of DR quanta, and \(n_{\text{RJ}} \) represents the low-energy RJ tail of the standard CMB. Recent papers [7, 8] examine interacting DR in the regime where the individual quanta are fewer in number but harder in energy than typical CMB photons, \(n_{\text{DR}} \ll n_{\text{CMB}} \) and \(\omega_{\text{DR}} \gg \omega_{\text{CMB}} \). The interest in an enhancement of the CMB is based on recent tentative observation of a stronger-than-expected absorption signal of 21 cm photons [9], which can be explained by resonant \(A' \rightarrow A \) oscillations of dark photons into regular photons in the interval of redshifts \(20 < z < 1700 \) [5].

II. NONTHERMAL RADIATION

The distortions of the CMB has been studied with the aid of the integral representation for the photon number density

\[
n_{\text{CMB}}(\omega, t) = \frac{1}{\pi^2 c^2} \int_0^\infty dT \frac{\sigma(T, t)}{e^{\omega/T} - 1}, \tag{2}
\]

where the spectral function \(\sigma(T, t) \) is positive definite and, in general, is a function of time or the cosmological redshift \(z \), where \(z \geq 0 \) and \(z = 0 \) corresponds to our present time [10, 11]. Such integral representations were obtained by unifying the notions of the “approach-to-equilibrium” in quantum statistical mechanics and that of the asymptotic condition in axiomatic quantum field theory in order to describe nonthermal radiation whereby the equilibrium, thermal states form a basis for nonthermal or nonequilibrium states [12].

It is interesting that the distribution (2) appears in an integral equation of Laplace [13] by replacing the Maxwell distribution by that of Planck. Paley and Wiener [13] describe radiation from a source in approximate local equilibrium by (2), where \(\sigma(T, t) \) denotes the “amount” of radiation coming from black bodies at temperature \(T \); consequently, \(\sigma(T, t) \) must be positive definite and \(\sigma(T, t) \text{d}T \) gives the amount of radiation coming from the temperature range \(T \) to \(T + \text{d}T \).

The case of the integral equation of Laplace [13], viz. Laplace transforms, is the application of the completeness of the equilibrium, thermal states in the description of nonthermal or nonequilibrium states in classical statistical mechanics. The classical integral transform was applied successfully in the study of the approach to equilibrium of Maxwell molecules [14], an exact (similarity) solution of the nonlinear Boltzmann equation [15, 16]. The application of the classical transform, and conse-

*alexianan@uncw.edu
quently that for nonthermal radiation was characterized as the temperature integral transform [17].

The low-frequency photons comprising the RJ tail of the nonthermal radiation (2) are in thermal equilibrium with temperature

\[T_{RJ}(t) = \int_0^\infty dT T \sigma(T, t), \]

(3)

which arises from bremsstrahlung processes that are always present.

Spectrum (2) is bounded from below [11] by

\[n_{CMB}(\omega, t) \geq \frac{1}{\pi^2} \frac{\omega^2}{c^3} \frac{C(t)}{\exp[\hbar \omega C(t)/kT_{RJ}(t)] - 1}, \]

(4)

where

\[C(t) = \int_0^\infty dT \sigma(T, t). \]

(5)

and \(C(t) \) and \(T_{RJ}(t) \) are, in general, functions of time, viz., redshift [11].

III. CMB SPECTRUM CONSTRAINTS

One obtains an upper bound to \(n_{CMB}(\omega, t) \) with the aid of the inequality \(e^x - 1 - x \geq 0 \) and so (2) implies

\[\frac{1}{\pi^2} \frac{k \omega}{hc^3} T_{RJ}(t) \geq n_{CMB}(\omega, t), \]

(6)

which bounds the CMB spectrum by the Rayleigh-Jeans law with temperature \(T_{RJ}(t) \). This places a constraint for the cosmological excess at 21 cm emission or absorption signal [9].

One obtains the following inequalities for the number of photons per unit volume \(n_{CMB}(t) \) and the internal energy per unit volume \(u_{CMB}(t) \) with the aid of inequality (4)

\[n_{CMB}(t) = \int_0^\infty d\omega n_{CMB}(\omega, t) \geq \frac{2 \zeta(3)}{\pi^2 (ch)^3} \frac{(kT_{RJ}(t))^3}{(C(t))^2}, \]

(7)

where \(\zeta(3) \) is the Riemann’s zeta function and

\[u_{CMB}(t) = \int_0^\infty d\omega \hbar \omega n_{CMB}(\omega, t) \geq \frac{\pi^2}{15 (eh)^3} \frac{(kT_{RJ}(t))^4}{(C(t))^3}, \]

(8)

respectively. The ratio of the internal energy per unit volume \(u_{CMB}(t) \) to the internal energy per unit volume \(u_P(t) \) of a Planckian spectrum with temperature \(T_{CMB}(t) \) is

\[\frac{u_{CMB}(t)}{u_P(t)} \geq \left[\frac{1}{C(t)} \right]^3 \left[\frac{T_{RJ}(t)}{T_{CMB}(t)} \right]^{\gamma}, \]

(9)

where

\[n_P(\omega, t) = \frac{1}{\pi^2} \frac{\omega^2}{c^3} \frac{1}{\exp[\hbar \omega/kT_{CMB}(t)] - 1}. \]

(10)

and

\[u_P(t) = \int_0^\infty d\omega \hbar \omega n_P(\omega, t). \]

(11)

Note, in particular, that if \(C(t) = 1 \) and \(T_{RJ}(t) > T_{CMB}(t) \), then the present CMB is “hotter” than a black-body radiation with temperature \(T_{CMB} = 2.725K \), viz., \(u_{CMB}(t) > u_P(t) \). Therefore, if \(T_{RJ}(t) > T_{CMB}(t) \), then one must have \(C(t) > 1 \) to allow the present CMB to be “cooler” than a black-body radiation with temperature \(T_{CMB} \). Actually, from (4) one has

\[n_{CMB}(\omega, t) > \frac{1}{\pi^2} \frac{\omega^2}{c^3} \frac{1}{\exp[\hbar \omega/kT_{CMB}(t)] - 1}, \]

(12)

for \(C(t) = 1 \) and \(T_{RJ}(t) > T_{CMB}(t) \) there is, hence, a photon number enhancement for all values of \(\omega \).

IV. ILLUSTRATIVE EXAMPLE

Recent works suggest a CMB that is very close to a Planckian spectrum but with a significant increase of photon counts in the RJ tail [5]. We present a simple example of the distortions of the CMB, from that of a pure Planckian spectrum with temperature \(T_{CMB} \), that follows from the integral representation (2). Consider

\[u_{CMB}(\omega) = \frac{\omega^3}{\pi^2} \left[\frac{C_1}{\omega^2 / T_1 - 1} + \frac{C_2}{e^\omega / T_2 - 1} \right], \]

(13)

where we have chosen \(h = c = k = 1 \). One has from (3) and (5) that

\[C = C_1 + C_2 \quad \text{and} \quad T_{RJ} = C_1 T_1 + C_2 T_2. \]

(14)

Let \(C_1 = C_2 = 1 \) and \(T_1 = 0.999 T_{CMB} \) and \(T_{RJ} = 1.060 T_{CMB} \), which implies that \(T_2 = 0.061 T_{CMB} \).

Fig. 1 shows the plots for the upper bound given in (6) (green), the lower bound in (4) (red), our example in (13) (blue), and the Planckian black body spectrum in (12) (black). The present temperature of the CMB is \(T_{CMB} = 2.725K \). Note that the blue plot is between the red and the blue, which will always be the case. The dot in the green plot at \(\omega / T_{CMB} = 0.0251 \) represents the upper bound (6) for the 21 cm photons for \(T_{RJ} = 1.060 T_{CMB} \). Note that the observation of the absorption signal of 21 cm photons will determine the maximum possible value of \(T_{RJ} \).

Fig. 2 shows plots for our example in (13) and the Planckian black body spectrum in (12) (black). The plots cross at \(\omega / T_{CMB} = 0.360 \) (not shown) with the higher values of the blue plot over the black plot representing the enhancement of photons over that of the black body radiation. The enhancement of photons in the RJ tail does not give rise to an increase in the internal energy of our example (13) over that of the black body radiation given in (12). In fact, the internal energy per unit volume of both spectra are the same since the contribution
FIG. 1: Plots of the upper bound given in (6) (green), the lower bound in (4) (red), our example in (13) (blue) and the Planckian black body spectrum in (12) (black) at the temperature of the CMB as observed in the present day, viz., $T_{CMB} = 2.725K$. The dot in the green plot at $\omega/T_{CMB} = 0.0251$ represents the upper bound (6) for the 21 cm photons for $T_{RJ} = 1.060T_{CMB}$.

FIG. 2: The blue plot represents our example (13) and the black that of the black body radiation in (12). The plots cross at $\omega/T_{CMB} = 0.360$ (not shown) with the higher values of the blue plot over the black plot representing the enhancement of photons over that of the black body radiation with temperature T_{CMB}.

FIG. 3: Region of maximum difference between our example (13) and the black body radiation in inequality (12).

of the spectrum with temperature T_2 in (13) is negligible in comparison to the overall internal energy per unit volume.

Fig. 3 shows the region of maximum difference between our example (13) and the black body radiation in inequality (12). The difference between the two plots is 0.03% at $x = 2.82$, where the black body radiation attains its maximum value.

Therefore, the model of interacting DR quanta much softer, but more numerous than CMB photons [5], may result in actually “cooling” the CMB radiation even though $T_{RJ} > T_{CMB}$ implies the enhancement of photons in the RJ tail, viz., the “heating-up” of low frequency photons.

It is important to remark that $C(t) = 1$ is in total disagreement with the data for the CMB. The lower bound (4) implies for $T_{RJ} = 1.060$, a 6% increase of the temperature T_{RJ} over T_{CMB}, that at $x = 2.82$, which is near the peak of the black body radiation, the lower bound is 19% higher than the black body radiation and so in total disagreement with the data. This, of course, implies that $C(t) > 1$, which is the case for our example above of the two-temperature approximation to the integral (2), and indicates an additional cosmological contribution to the present CMB besides the original remnant of the Big Bang.

V. SUMMARY AND CONCLUSION

We have established several constraints on the spectrum of the CMB that follow from the integral representation (5). One obtains an upper bound (6) to the spectrum given by the Rayleigh-Jeans law with temperature T_{RJ} and a lower bound given by (4). Observations of the absorption signal of the 21 cm photons may set an upper bound to the value of T_{RJ}. Also, if $T_{RJ} > T_{CMB}$, then we must have that $C(t) > 1$ in (5) which requires additional cosmological sources which when added to the remnant radiation from the Big Bang gives us the present CMB. We believe that the integral representation (2) for nonthermal radiation may be considered as an additional constraint to other cosmological or astrophysical constraints in the study of the distortions of the CMB brought about by new physics particles or fields.